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The development of a two-timescale discretization scheme for collocation is
presented. This scheme allows a larger discretization to be utilized for smoothly
varying state variables and a second finer discretization to be utilized for state
variables having higher frequency dynamics. As such, the discretization scheme
can be tailored to the dynamics of the particular state variables. In so doing, the
size of the overall Nonlinear Programming (NLP) problem can be reduced sig-
nificantly. Two two-timescale discretization architecture schemes are described.
Comparison of results between the two-timescale method and conventional col-
location show very good agreement. Differences of less than 0.5 percent are ob-
served. Consequently, a significant reduction (by two-thirds) in the number of
NLP parameters and iterations required for convergence can be achieved with-
out sacrificing solution accuracy.

INTRODUCTION

In the collocation method, a single timescale discretization scheme is utilized for all
the state variables. This approach works very well for solving a great variety of problems.
However, if the dynamics of one or some of the state variables are at a high frequency
(e.g., in six-degree-of-freedom trajectory optimization problems), a sufficiently small
discretization timescale is required (i.e., greater number of segments needed) in order to
capture the appropriate dynamics. However, with the present available collocation meth-
odologies, even if only one state variable requires a small discretization timescale, all the
state variables must utilize a small timescale due to the architecture of collocation. This
limitation results in the size of the Nonlinear Programming (NLP) problem that must be
solved becoming enormous due to the fine discretization employed. If a separate discreti-
zation scheme can be employed, one for the lower frequency state variables (using a lager
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timescale) and another one for the higher frequency state variables (at a finer timescale),
the size of the NLP problem can be greatly reduced. Consequently, the finer discretiza-
tion timescale can be tailored to only those state variables that have higher frequency dy-
namics in the governing equations, while the rest of the state variables can utilize a much
larger discretization timescale. This two-timescale methodology is well suited for solving
six-degree-of-freedom trajectory optimization problems, where the dynamics character-
ized by the translational motion state variables are at a low frequency, while the dynam-
ics characterized by the rotational motion state variables are at a high frequency.1

This paper describes the development of a two-timescale discretization scheme for
collocation. Before the discussion of the two-timescale collocation methodology, an over-
view of the standard collocation method is first provided. Finally, results from a sample
test case using the two-timescale methodology are presented, and a comparison of the
solutions obtained from this new method and from conventional collocation is provided.

STANDARD COLLOCATION METHODOLOGY

The optimal control problem minimizes a cost function

J = J(x, u, t) (1)

subject to a set of state equations of motion for the dynamical system

† 

dx /dt = f (x,u,t) (2)

having initial (c) and final boundary (Y) and path constraints (g)

† 

c (x(t0),t0) = 0 (3)

† 

Y (x(t f ),t f ) = 0 (4)

† 

g (x,u,t) £  0 (5)

where x and u are vectors representing the state and control variables. In the method of
Direct Collocation with Nonlinear Programming (DCNLP) the total time (T = tf – t0) is
discretized into n segments (or nodes), where the length of each segment is Dt = T/n. The
state differential equations (2) are approximated within each segment using an integration
formula. The formulation for the approximate integration of the system equations trans-
forms them into a set of discrete algebraic constraints (referred to as defect equations)
imposed at each segment in the discretization. Within each segment, evaluation points are
selected at which x and u must satisfy (2)-(5). When satisfied, an approximate solution to
the system equations is obtained. In this manner, for the overall NLP problem, the state
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and control parameters are chosen to minimize the performance function while repre-
senting an approximate solution to the system equations. The discrete algebraic constraint
equations can have different forms depending upon the implicit integration formulation
utilized.2,3

Figure 1 illustrates the system constraint formulation using a higher-order integration
formula based on a fifth-degree Gauss-Lobatto polynomial.3 In this version of the
DCNLP method, each state variable is represented by a quintic polynomial (in time)
within each segment. Six parameters are required to define the polynomial uniquely; they
can be determined using the values of the states (xi, xi+1, xi+2) at the boundaries and at the
center point, together with the values of the time derivatives fi, fi+1, and fi+2 which corre-
spond to values of dx/dt (Eq. 2) evaluated at ti, ti+1, and ti+2, respectively. Note that
evaluation of fi, fi+1, and fi+2 requires specification of the control variables at the same
times (i.e., ui, ui+1, ui+2). Making use of xi, xi+1, xi+2, ui, ui+1, ui+2, fi, fi+1, and fi+2, a poly-
nomial representing the state time history between the endpoints can be constructed (as
shown in Fig. 1).

Figure 1  Fifth-degree Gauss-Lobatto System Constraint Formulation
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In the fifth-degree Gauss-Lobatto polynomial, two evaluation points are required
within each segment. The algebraic constraints take the form3

† 

Cx1 = fa - ¢ x a =
1

360
[(32 21 +180) xi - 64 21 xi+1 +(32 21 -180) xi+2

† 

+Dt{(9 + 21) fi + 98 fa + 64 fi+1 +(9 - 21) fi+2}] = 0 (6)

† 

Cx2 = fb - ¢ x b =
1

360
[(-32 21 +180) xi + 64 21 xi+1 +(-32 21 -180) xi+2

† 

+Dt{(9 - 21) fi + 98 fb + 64 fi+1 +(9 + 21) fi+2}] = 0 (7)

where fa = f(xa, ua, ta) and fb= f(xb, ub, tb). The states (xi, xi+1, xi+2) and controls (ui, ua,
ui+1, ub, ui+2) shown in bold in Fig. 1 are discrete NLP parameters. The values of these
states and controls are selected to force the algebraic constraints to zero. In so doing, the
polynomial is made to satisfy the differential equation at the collocation points ta and tb of
the segment (in addition to being implicitly satisfied at ti, ti+1, and ti+2). When Eqs. (6) and
(7) are satisfied, an approximate solution to the system equations is obtained. The method
is discussed in much greater detail in Reference 3.

TWO-TIME SCALE COLLOCATION METHODOLODY

A two-timescale discretization scheme for collocation utilizes a standard timescale
discretization scheme for the smoothly-varying lower-frequency state variables and an-
other finer timescale discretization scheme for the higher-frequency state variables. Two
different two-timescale discretization schemes are presented: 1) using two segments to
represent the higher frequency state variables for every one segment of the low frequency
state variables (i.e., a two-to-one discretization architecture), and 2) using four segments
to represent the higher frequency state variables for every one segment of the low fre-
quency state variables (i.e., a four-to-one discretization architecture).

Two-To-One Discretization Architecture

In the two-timescale collocation architecture, the state variables are split into the
lower frequency state variables represented by the vector x and the higher frequency state
variables which are represented by the vector z. The control variables are defined by the
vector u. Figure 2 illustrates the system constraint formulation for the two-to-one discre-
tization architecture. Note, this figure has the same features as that of Figure 1, but has
been simplified for clarity. As seen, there are two segments defined for the finer discreti-
zation state variables z for every one segment for the standard or lower frequency state
variables x. The variables in bold are NLP parameters.
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Figure 2  Two-to-one Two-timescale Discretization Scheme

The x state variables utilize the standard collocation discretization scheme. The “de-
fect” algebraic constraint equations are formulated as described in the previous section.
All the state and controls variables (xi, xi+1, xi+2, zi, zi+2, zi+4, ui, ui+2, ui+4) at the left-hand
side, center, and right-hand side of the segment that are necessary to evaluate the defect
constraints equations (Cx1 and Cx2) are available (and shown in boldface), except for the
control variables ua and ub at the left-of-center and right-of-center locations within the
segment. In the standard collocation architecture, these variables would be NLP parame-
ters. However, in the two-to-one two-timescale formulation, they have been eliminated.
As a result, their values need to be determined. They are obtained by forming a quartic
polynomial using the control variables ui, ui+1, ui+2, ui+3, ui+4 and evaluating this quartic
polynomial at the specific times of ua and ub. Consequently, all the variables that are re-
quired for evaluating the defect constraints equations Cx1 and Cx2 using Eqs. (6) and (7)
are available for the standard or lower frequency portion of the scheme.

Similarly, for the finer discretization portion of the scheme, the algebraic constraint
equations Cz1 through Cz4 need to be formulated. Again, a few variables are needed
which are not NLP parameters. They are the controls u1a, u1b, u2a, and u2b, along with two
additional unknowns, the state variables x1a and x2a at the center points of the two seg-
ments. The values for these controls can be obtained by evaluating the same quartic poly-
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nomial, defined previously by using ui, ui+1, ui+2, ui+3, ui+4, at the appropriate times to
yield u1a, u1b, u2a, and u2b. The state variables x1a and x2a can be determined by forming a
quintic polynomial using the NLP parameters at the left-hand (xi, zi, ui), center (xi+1, zi+2,
ui+2), and right-hand (xi+2, zi+4, ui+4) sides of the scheme, along with their function
evaluations fi, fi+2, fi+4 using Eq. (2), and evaluating this polynomial at their respective
times. Consequently, all the variables that are required for evaluating the defect constraint
equations Cz1 and Cz2 in the first segment and Cz3 and Cz4 in the second segment utiliz-
ing Eqs. (6) and (7) are available for the higher frequency portion of the scheme. This
process can be repeated for any number of segments.

Four-To-One Discretization Architecture

If additional refinement is required for the higher frequency state variables, a four-to-
one discretization architecture can be utilized. Figure 3 illustrates the system constraint
formulation. The overall scheme is very similar to that of the two-to-one architecture.
However, there are four segments defined for the finer discretization state variables z for
every one segment for the standard or lower frequency state variables x. The variables in
bold are again NLP parameters.

Figure 3  Four-to-one Two-timescale Discretization Scheme
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The process for determining the defect constraints equations Cx1 and Cx2 in the stan-
dard or lower frequency portion of the scheme is the same as that described in the two-to-
one two-timescale architecture section. The control variables ua and ub are obtained by
forming a quartic polynomial using the control variables ui, ui+1, ui+2, ui+3, ui+4 and evalu-
ating this quartic polynomial at the appropriate times to yield ua and ub. Consequently, all
the variables that are required for evaluating the defect constraints equations Cx1 and Cx2

using Eqs. (6) and (7) are available.

For the finer discretization portion of the scheme, the algebraic constraints equations
Cz1 through Cz8 are formulated as described in the two-to-one architecture section as
well. However, since there are four segments for this architecture, there are additional
variables that are unknown and need to be determined. All the controls (uia, uib, uic) inte-
rior to each of the four finer descretization segments are obtained by evaluating the same
quartic polynomial defined by ui, ui+1, ui+2, ui+3, ui+4 at their respective times. Similarly,
all the interior state variables (xia) are obtained by forming a quintic polynomial using the
NLP parameters at the left-hand (xi, zi, ui), center (xi+1, zi+2, ui+2), and right-hand (xi+2,
zi+4, ui+4) sides of the interior segments, along with their function evaluations fi, fi+2, fi+4

using Eq. (2), and evaluating this polynomial at their respective times. Consequently, all
the variables that are required for evaluating the defect constraint equations Cz1 through
Cz8 utilizing Eqs. (6) and (7) within the four segments are available for the higher fre-
quency portion of the scheme. This process can be repeated for any number of segments.

RESULTS

A problem similar to the lunar ascent problem of Bryson and Ho4 is used to validate
the two-timescale collocation architecture.

The two-dimensional lunar ascent problem has four state variables (X and Y Carte-
sian coordinates, U and V velocities) and one control variable, a thrust pointing angle (q).
The state equations are:

† 

˙ X = U (8)

† 

˙ Y = V (9)

† 

˙ U = a *cosq - 0.5*g* U2 + V2 / X2 + Y2 (10)

† 

˙ V = a *sinq - g - 0.5 * g * U2 + V2 / X2 + Y2 (11)

where a is a constant thrust acceleration and g is gravity. Note that the last term in Eqs.
(10) and (11) has been added to increase the coupling between the state equations in an
effort to thoroughly exercise the two-timescale architecture. This term behaves similar to
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a drag force. The objective is to minimize the time to achieve a desired orbit altitude and
velocity. The solution history using the standard collocation scheme is first provided.
Then, a comparison is made with the results obtained utilizing both the two-to-one and
four-to-one two-timescale architectures.

Figures 4-6 show the position, velocity, and control histories using the standard collo-
cation scheme.

Figure 4  Time History of X And Y Position Figure 5  Time History of U and V Velocities

Figure 6  Time History of Theta Angle

Two cases are used to illustrate the two-timescale discretization architecture. Case 1
exercises the two-to-one two-timescale architecture. In this case, the X and Y state vari-
ables utilize a standard discretization, while U and V state variables utilize a finer discre-
tization. Specifically, two segments are employed for states U and V for every one seg-
ment for states X and Y. Note that for this test case U and V are chosen arbitrarily to act
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as the “high-frequency” states for the two-timescale discretization; there is no significant
difference in the rate at which U and V change in comparison to the other states. The in-
tention is simply to show how well the solution of the problem can be accomplished us-
ing two timescales rather than just one. For an equivalent comparison to the two-
timescale solution, the standard one-timescale collocation architecture utilizes 20 seg-
ments. Table 1 summarizes the results.

Table 1
COMPARISON OF THE STANDARD AND TWO-TO-ONE

TWO-TIMESCALE ARCHITECTURES

# of # of NLP # of Defects # of Max
Segments Parameters Equations Iterations Difference

Standard 20 246 160 104 — N.A. —
Case 1 10/20 166 120 58 0.07%, 0.5%

As seen, the number of NLP parameters is significantly reduced from 246 for the
standard one-timescale collocation architecture to 166 for the two-to-one two-timescale
discretization collocation architecture. The number of algebraic constraint equations is
reduced as well. Consequently, the resulting number of iterations required for solution
convergence is significantly reduced from 104 to 58, respectively. Furthermore, nearly
identical results are obtained with the two-timescale collocation architecture. The maxi-
mum difference observed in any of the state variables is less than 0.07 percent between
the two methods. The difference in the control variable is only slightly higher (less than
0.5 percent). These results illustrates that a significant reduction in the number of NLP
parameters, and hence solution convergence, can be achieved without sacrificing solution
accuracy.

Case 2 exercises the four-to-one two-timescale architecture. In this case, the X, Y,
and U state variables utilize a standard discretization, while the V state variable utilizes a
finer discretization. Specifically, four segments are employed for the state V for every
one segment for states X, Y, and U. Note that for this test case V is chosen arbitrarily to
act as the “high-frequency” state for the two-timescale discretization. There is no signifi-
cant difference in the rate at which V changes in comparison to the other states. The in-
tention is simply to show how well the solution of the problem can be accomplished us-
ing two timescales rather than just one. For an equivalent comparison to the two-
timescale solution, the standard one-timescale collocation architecture utilizes 40 seg-
ments. Table 2 summarizes the results.



10

Table 2
COMPARISON OF THE STANDARD AND FOUR-TO-ONE

TWO-TIMESCALE ARCHITECTURES

# of # of NLP # of Defects # of Max
Segments Parameters Equations Iterations Difference

Standard 40 486 320 199 — N.A. —
Case 1 10/40 186 140 64 0.08%, 0.3%

As seen, the number of NLP parameters is significantly reduced from 486 for the
standard one-timescale collocation architecture to 186 for the two-to-one two-timescale
discretization collocation architecture. The number of algebraic constraint equations is
reduced considerably as well from 320 to 140. Consequently, the resulting number of it-
erations required for solution convergence is significantly reduced from 199 to 64. Fur-
thermore, nearly identical results are obtained with the two-timescale collocation archi-
tecture. The maximum difference observed in any of the state variables is less than 0.08
percent between the two methods. The difference in the control variable is only slightly
higher (less than 0.3 percent). These results again illustrate that a significant reduction in
the number of NLP parameters, and hence solution convergence, can be achieved without
sacrificing solution accuracy.

CONCLUSIONS

The development of a two-timescale discretization scheme for collocation is pre-
sented. This scheme allows a larger discretization to be utilized for smoothly-varying
state variables and a second finer discretization to be utilized for state variables having
higher frequency dynamics. As such, the finer discretization timescale can be tailored to
only those state variables that have higher frequency dynamics in the governing equa-
tions, while the rest of the state variables can utilize a much larger discretization times-
cale. In so doing, the size of the overall NLP problem is significantly reduced as com-
pared to the conventional single-timescale collocation architecture.

Two two-timescale architecture discretization schemes are described: 1) using two
segments to represent the higher frequency state variables for every one segment of the
low frequency state variables, and 2) using four segments to represent the higher fre-
quency state variables for every one segment of the low frequency state variables.  Re-
sults from two test cases are presented to validate the two-timescale collocation architec-
ture, and compared to the solution obtained from the conventional collocation method.
Comparison shows a very good agreement between the two methods with a maximum
difference of less than 0.08 percent for the state variables and less than 0.5 percent for the
control variables. The number of NLP parameters and iterations required for convergence
for the two-timescale scheme can be reduced by two-thirds. Consequently, a significant
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reduction in the number of NLP parameters, and hence solution convergence, can be
achieved without sacrificing solution accuracy.
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